Constructive polynomial approximation with a priori error bounds for nonlinear initial value differential problems
نویسندگان
چکیده
منابع مشابه
Initial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملError bounds for initial value problems by optimization
We use preconditioned defect estimates and optimization techniques to compute error bounds for approximate solutions of initial value problems for ordinary differential equations with uncertain initial conditions. The bounds are based on new results about conditional differential inequalities, which are developed, too. The scheme is implemented in MATLAB and AMPL, and the resulting enclosures a...
متن کاملValidated Numerical Bounds on the Global Error for Initial Value Problems for Stiff Ordinary Differential Equations
Validated Numerical Bounds on the Global Error for Initial Value Problems for Stiff Ordinary Differential Equations Chao Yu Master of Science Graduate Department of Computer Science University of Toronto 2004 There are many standard numerical methods for initial value problems (IVPs) for ordinary differential equations (ODEs). Compared with these methods, validated methods for IVPs for ODEs pro...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Constructive A Priori Error Estimates for a Full Discrete Approximation of the Heat Equation
In this paper, we consider the constructive a priori error estimates for a full discrete numerical solution of the heat equation. Our method is based on the finite element Galerkin method with an interpolation in time that uses the fundamental solution for semidiscretization in space. The present estimates play an essential role in the numerical verification method of exact solutions for the no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(99)00233-3